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Abstract—Networks built using SDN (Software-Defined 

Networks) and NFV (Network Functions Virtualization) 

approaches are expected to face several challenges such as 

scalability, robustness and resiliency. In this paper, we propose a 

self-modeling based diagnosis to enable resilient networks in the 

context of SDN and NFV. We focus on solving two major 

problems: On the one hand, we lack today of a model or template 

that describes the managed elements in the context of SDN and 

NFV. On the other hand, the highly dynamic networks enabled 

by the softwarisation require the generation at runtime of a 

diagnosis model from which the root causes can be identified. In 

this paper, we propose finer granular templates that do not only 

model network nodes but also their sub-components for a more 

detailed diagnosis suitable in the SDN and NFV context. In 

addition, we specify and validate a self-modeling based diagnosis 

using Bayesian Networks. This approach differs from the state of 

the art in the discovery of network and service dependencies at 

run-time and the building of the diagnosis model of any SDN 

infrastructure using our templates.  

Keywords— self-modeling; self-diagnosis; Bayesian networks; 

SDN; NFV; 

I. INTRODUCTION 

SDN (Software-Defined Networks) and NFV (Network 

Function Virtualization) is a novel phenomenon that is on the 

wish list of major industrial players (vendors, operators, 

content providers, software editors) as the means to achieve 

greater flexibility in managing the network, faster service 

deployment and provisioning while reducing operational costs. 

SDN is expected to pave the way towards network 

programmability by proposing network architecture based on 

abstraction, open interfaces, and control plane-data plane 

separation. On the other hand, NFV promise is to turn 

traditional network functions into virtual ones called Virtual 

Network Functions (VNF) and embed them into 

commoditized hardware. The combination of both approaches 

is commonly agreed to be the best solution and is the next 

industry move despite the preliminary stage of the 

management of such environment [2][3]. In particular, 

resiliency properties become fundamental for both 

technologies as discussed in [4]. We rely on self-diagnosis [5] 

as a first step towards resiliency. Self-diagnosis is an 

autonomic capability where the network is aware of any 

abnormal state and diagnoses itself to determine the root cause 

to perform the appropriate remediation or recovery actions. 

Those actions may be based on redundancy or diversity 

mechanisms, which bypass the presumed faulty network 

elements. 

In the SDN and NFV context, the highly changing networks 

impose numerous diagnosis challenges, specifically how to 

detect continuous changes and update dependencies among 

virtual and physical resources. 

The contribution of this paper is twofold: 1) definition of finer 

granularity templates that model the dependencies among 

SDN nodes (physical and logical) as well as smaller sub-

components inside them (e.g. CPU, network cards, etc).  

2) Specification and validation of a self-modeling approach 

that tracks changes on the network topology of the networked 

nodes and their corresponding VNFs at runtime. 

 

The structure of the paper is as follows: Section II motivates 

our work and Section III summarizes the related work on 

model-based network diagnosis which includes the diagnosis 

techniques and the models that are in use. Section IV presents 

the proposed self-model based diagnosis framework including 

the template definition and the defined algorithm. Section V 

presents the experimental validation. Finally, Section VI 

summarizes our findings and outlines the future work. 

II. MOTIVATION 

We consider an end-to-end service delivered to clients through 

SDN and NFV based networks. This combination of SDN and 

NFV raises the following questions with respect to diagnosis:  

 The first challenge is how to model the dependencies among 

VNFs at runtime, as these dependencies may vary over time 

and depend on the service contracted by each user (Fig. 1 

(a)).  

 The second challenge is how to model at runtime the 

dependencies of the underlying network topology, when it is 

considered dynamic (Fig. 1 (b)). The network topology is 

dynamic due to several reasons like the connections and 

disconnections of users to the Access Points (AP), 

handovers, and especially VNF migrations and the 

orchestration of new services.  

 The third challenge is how to model the two types of control 

in SDN, out-of-band and in-band. In out-of-band control, 
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the controller is directly connected to every switch by a 

dedicated control link, but in in-band control, the controller 

is only directly connected to the master switch, becoming 

this one an intermediate node that connects the controller 

with the rest of switches (slaves). 

 
Fig. 1. SDN-NFV scenario: (a) end-to-end service, and (b) network  topology 

As it will be explained in section III, the most popular 

approach for diagnosis is the model-based diagnosis. Our 

approach targets to answer the challenges of diagnosis in the 

context of SDN and NFV and tracks the dynamic network 

topology. For this, we propose 1) a model that is suitable to 

handle the specific elements to monitor within a combined 

SDN and NFV scenario, and 2) a self-modeling algorithm to 

enable the automation of the diagnosis model.  

III. RELATED WORK ON MODEL-BASED DIAGNOSIS 

The diagnosis model is generally a dependency graph. In 

general, the dependency graph is manually generated from an 

operational team‟s knowledge. This manual generation is valid 

for static network topologies, but not for dynamic and elastic 

networks such as those expected with SDN and NFV. A self-

modeling approach is presented in the literature as the 

automatic generation of this model [6]. The dependency graph 

is first generated from a given data set (databases [7], genetic 

algorithms [8], or ontologies [9]).  An inference engine (based 

on algorithms such as Bayesian Networks [6][10], Occam‟s 

Razor [12], or others) reasons then the dependency graph in 

order to extract the root cause. 

In this paper, we focus on the generation at runtime of the 

dependency graph from the dynamic network topology. We 

consider the following works [6][10][11][12] which we 

explain and compare hereafter:  

 

Hounkonnou et al. in [6] propose a self-modeling approach 

based on patterns to enhance Bayesian Networks (BN) and 

apply it to diagnose the IP Multimedia Subsystem (IMS). This 

approach generates offline a generic model (pattern) that is 

based on the four IMS layers (physical, functional, procedural 

and service). A pattern describes the dependencies among 

resources used by an IMS service. When a failure occurs in 

the IMS service, the algorithm locates online instances of that 

pattern in a given network topology and it generates the 

corresponding BN instance. However, this work assumes that 

the network topology remains static during the diagnosis 

process. Furthermore, the granularity of the diagnosis covers 

the four layers of IMS but it diagnoses only the network 

resource level, without considering smaller sub-components 

inside them. It is also worth mentioning that it does not 

consider virtual environments. 

 

Bennacer et al. in [10] base their self-modeling approach on 

Chi-squared statistical tests. These tests learn the 

dependencies among modeled variables. They utilize a 

„significance level‟ to decide their dependencies. This self-

modeling approach considers physical symptoms as variables 

on each network node. However, the granularity of the 

diagnosis remains at the network node level, where smaller 

sub-components are not considered.  Furthermore, the 

diagnosis is focused on the physical network nodes and is not 

considering the logical resources (e.g. virtual resources) 

running over them. In addition, inappropriate values of 

„significance level‟ may lead to errors when building the 

dependency graph. 

 

Kandula et. al. in [11] present a self-modeling approach based 

on templates. They define specific templates for each element 

such as a machine, an application process, a neighbor set and a 

path.  Each template is characterized by several state variables 

to achieve a detailed diagnosis. Same as [6][10], the model 

granularity remains at the node level and does not consider 

smaller sub-components inside them.  

Bahl et. al. in [12] models the dependencies among different 

services, but also the dependencies among network nodes 

given by the network topology. However, they do not consider 

smaller sub-components inside nodes or virtual resources. 
 

This article advances the state of the art by describing a self-

modeling based diagnosis to discover at runtime the 

dependency model of SDN-NFV infrastructures. It then 

models automatically an SDN based end-to-end service, its 

underlying network topology, and the type of control 

implemented (in-band or out-of-band). Compared to [6], 

which assumes that the network topology, services and 

configuration remain static, our proposal, in the context of 

SDN-NFV, assumes a continuous changing network topology. 

We then create the dependency graph by instantiating 

templates at runtime. Unlike [10], our self-modeling approach 

builds the dependency graph from the network topology, 

instead of statistical tests to avoid inaccuracies in the model. 

The idea of using different templates to describe different 

network elements was inspired by [11]. Our templates are 

tailored to suit the SDN elements‟ particularities and VNFs 

deployed in the network nodes. Contrary to [6][10][11][12], 

we consider a finer dependency model granularity, that 

considers smaller sub-components within a network node and 

their internal dependencies (physical and logical) to be able to 

diagnose a combined SDN and NFV environment where 

virtual and physical parts such as network cards and CPU need 

to be diagnosed. We use Bayesian Networks approach [13] for 

the root cause calculation which is enhanced with our self-

modeling approach.  

IV. SELF-MODELING BASED DIAGNOSIS FRAMEWORK 

We present a self-modeling based diagnosis framework for 

SDN (Fig. 2). We propose: (1) a template to model SDN 
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elements and (2) a self-modeling approach that builds 

automatically the model from the network topology. 

 

Fig. 2. Self-Modeling based diagnosis framework 

The self-modeling building block is composed of the topology 

interpreter (a) and the dependency graph building (b) sub-

blocks. This block automatically builds the dependency graph 

based on the network topology and the type of SDN control 

(in-band and out-of-band). 

The root cause calculation building block finds the root cause 

through BNs. It receives a service alarm about service 

degradations or unavailability and correlates this alarm with 

network observations (the state of the physical and logical 

resources of each network node).  

A. Background on Bayesian Networks 

BNs utilize probabilistic properties to perform reasoning in 

uncertain domains [13]. The model, the dependency graph, is 

represented by a set of vertices V describing events interlinked 

by edges that represent the dependencies among vertices. The 

pair         describes a BN.   is the dependency graph, 

and   contains the parameters of the BN, which take shape of 

Conditional Probability Tables (CPT) that specify the 

probability of every child vertex of the dependency graph 

given all value combinations of its parents. The prior 

probability of failure (p) is different for each vertex. The 

dependency graph G is composed of observable and non-

observable vertices. To reason over the dependency graph, we 

set the network observations into its observable vertices as 

evidence and the BN algorithm determines the most likely root 

cause(s). 

B. Templates for modeling SDN networked elements 

We define a network element as any type of network nodes 

and links. We propose a template for each network element, so 

a template for network nodes and another for links. These 

templates describe the relationships between virtual and 

physical sub-components inside each network element. 

1) Network node template 

The template of a network node (TNn in Fig. 3(a)) is 

composed of a physical layer and a logical layer, following the 

TMF Information framework specifications [14].  

 The physical layer encompasses the state of physical 

resources such as CPU and network cards. We consider two 

states for those physical sub-components inside network 

nodes: up or down. 

 The logical layer encompasses the state of the VNFs 

running inside each node. We consider that network nodes 

perform one or several VNFs. For instance, the controller 

runs the appropriate network function that installs the rules 

in the switches as a VNF. A VNF relies on a software 

process, with suitable configuration settings. The logical 

layer contains three sub-layers in accordance with a three-

state life-cycle for each VNF: initiated, configured, and 

activated. Initiated: where the underlying software process 

of the network function is launched; configured: where the 

VNF is set with the optimal attributes to perform the 

network function; and activated: where the network function 

is ready to accept any request.  

The layers of the templates are manually predefined, but the 

number of network cards or running VNF per network node 

are retrieved from the network topology. 

 
Fig. 3. Templates and Dependency Graphs: (a) network node and (b) link 

Each type of network node discovered in the network topology 

(controllers (C1… Cn), slave switches (SS1… SSn), master 

switches (MS1… MSn), hosts (H1… Hn)) is an instance of this 

template.  

2) Link template 

The template of a network link (TLn Fig. 3 (b)) is simpler and 

it is composed of the physical layer and one vertex. Each type 

of link (control links (CL1… CLn), access links (AL1… ALn), 

and inter switch links (IL1… ILn)) is an instance of this 

template. 

C. Self-modeling building block 

The self-modeling building block automatically models out-

of-band and in-band SDN networks of any topology, by 

parsing the input data that contains the network topology, and 

automating the model creation process. 

1) Topology Interpreter: The topology interpreter is a 

northbound application that requests the network topology 

from the controller. The controller answers this request by 

providing the network topology in a JSON format. The 

topology data structure depends on the controller: for example, 

OpenDaylight and a Floodlight controller provide two 

different data structures, differing in the number and type of 

fields and the field names (Fig. 4). 

 

Controller

Manager
Topology

(b) Dependency Graph Building

Templates

Instantiation

Topological

sorting

Edges

Addition

Bayesian

Networks

Inference

A priori 

probability

Learning

Real-time 

observations

model
CPTs

evidences

alarms

status of nodes

degradations

Self-Modeling

Root Cause Analysis

Topology

Interpreter

(a)

VNF1:

Inititated

VNF1 : 

Configured

VNF1: 

Active

physical

logical

vCPU

VNFn:

Inititated

VNFn : 

Configured

VNFn: 

Active

…

…

…

…

Link

Network Node Template TNn

Network Link Template TLn

physical

(a)

(b)

Network

Card1

Network

Cardn

1

2 3

4

6

8 9

7

5

1

Dependency Graph GNn

LinkjLinki

Dependency Graph GLn

GLi GLj

GNi GNiNodei Nodej

{"hostConfig":
[{"dataLayerAddress":"00:00:00:00:00:01",
"nodeType":"OF",
"nodeId":"00:00:00:00:00:00:00:01",
"nodeConnectorType":"OF",
"nodeConnectorId":"1",
"vlan":"0","staticHost":false,
"networkAddress":"10.0.0.1"}]} (a) (b)

[{"entityClass":"DefaultEntityClass",
"mac":["00:00:00:00:00:01"],
"ipv4":["10.0.0.1"],"vlan":[],
"attachmentPoint":
[{"switchDPID":"00:00:00:00:00:00:00:01"
,
"port":1,"errorStatus":null}],
"lastSeen":1401877225763}]

(1)

(2)

(3)



THIS IS AN AUTHOR FILE OF AN ACCEPTED PAPER IN 1st CONFERENCE ON NETWORK SOFTWARIZATION (NetSoft2015) 

 

 

Fig. 4. JSON data structures provided by: (a) OpenDaylight, (b) Floodlight 

Thus, in a second stage, the topology interpreter classifies 

each network element into one of the following types 

(controllers (Cj), slave switches (SSj), master switches (MSj), 

hosts (Hj), control links (CLj), access links (ALj), and inter 

switch links (ILj). The result is then the network descriptor, 

which contains the network elements (nodes and links) at 

instant t, and the link descriptor, which specifies the end 

points of each link. 

2) Dependency graph building block:  

This block builds the global dependency graph (G) from the 

network descriptor. It is based on a three-step algorithm which 

we call: Template instantiation, topological sorting, and edge 

addition. 

 

I) The template instantiation algorithm 

This algorithm receives as input the network descriptor. It 

provides as output the global dependency graph G composed 

of the dependency graphs (GLn or GNn) built from the 

templates of each network element. It follows this 

methodology for each network element found in the network 

descriptor:  

 Identifies the type of network element 

 Instantiates its corresponding template (TLn for links and 

TNn for nodes) 

 Builds its associated dependency graph (GLn for links and 

GNn for nodes) from the instantiated template 

 Appends the dependency graph into the global dependency 

graph G. 

Each dependency graph (GLn or GNn) contains edges called 

here EINSIDE. EINSIDE edges (in dash in Fig. 3) depict the 

dependencies among sub-components inside each dependency 

graph (GLn or GNn). Each vertex in GLn or GNn is a state 

variable described by a different CPT. A  probability of failure 

(PFAILURE) is defined for each vertex even though the parents 

vertices are functioning. As an example, PFAILURE for the 

network card (NC) vertex, P(NC=down) is p, despite the 

proper functioning of its parent vertex (vCPU).  

The vertices of the global dependency graph G are not 

topologically sorted yet. We call these vertices as VUNSORTED. 
Algorithm: Templates instantiation 

IN: Network Descriptor  
IN: Templates 

{THOST,TSLAVE,TMASTER,TCONTROLLER,TACCESS_LINK,TCORE_LINK,TCONTROL_LINK} 

OUT: Global Dependency Graph G(VUNSORTED,EINSIDE) 

for each element in the network descriptor 

  inspection of type of element  

  if element is of type link 
    TLnăinstatiation of link template {TACCESS_LINK,TCORE_LINK,TCONTROL_LINK} 

    GLn ăextract dependency graph of template TLn 

    Gă append GLn to global dependency graph 

  else 

    TNnăinstatiation of node template {THOST,TSLAVE,TMASTER,TCONTROLLER} 

    GNn ăextract dependency graph of template TNn 
    Găappend GNn to global dependency graph 

  end if 

end for 

 

II) The topological sorting algorithm  

It sorts topologically the vertices of the global dependency 

graph G. It receives as input the dependency graph G with 

non-topologically ordered vertices (VUNSORTED) and it provides 

as output the same global dependency graph but topologically 

sorted (VSORTED). As an example, GNn and GLn (Fig. 3) 

present a topological order when separated, because any 

vertex index is repeated and parents are numbered before 

children vertices. However, when both are combined to obtain 

the global dependency graph G, the topological order is not 

respected, as both GNn and GLn contain repeated vertex 

indexes (e.g. both contain value „1‟). The topological sorting 

algorithm solves this issue.  
Algorithm: Topological Sorting 

IN: Global Dependency Graph G(VUNSORTED,EINTRA)  

OUT: Global Dependency Graph G(VSORTED,EINTRA)  
for each dependency graph appended to G 

  for each layer in template 

    obtain vertices of appended graph at current layer 
    sort its vertices topologically 

  end for 

end for 

 

III) The edge addition algorithm  

This algorithm adds the dependencies between the previously 

appended dependency graphs (GNn and GLn) by the template 

instantiation algorithm. It receives as input the link descriptor 

and the global dependency graph (topologically sorted). 

 It puts one dependency graph of link GLn in between the 

two dependency graphs of the nodes GNn to be connected 

(these nodes are given in the link descriptor).  

 It then adds two EINTER edges from the dependency graph of 

the link GLn to the two dependency graph of nodes GNn.  

EINTER depicts the dependencies between GLn and GNn.  In 

Fig. 3(a), the dependency graph of one node GNn has two 

incoming EINTER edges from the dependency graphs of links 

GLi and GLj. In Fig. 3(b), the dependency graph of one link 

GLn has two outgoing edges EINTER towards the dependency 

nodes of GNi and GNj.  
Algorithm: Edge addition 

IN: Link Descriptor, Global Dependency Graph G(VSORTED,EINSIDE) 

OUT: Global Dependency Graph G(VSORTED,EINSIDE,EINTER) 

for each link in Link Descriptor 
   extract end points attached to link 

   for each end point in link 

     EINTERăadd edge from GLn[link,link] to GNn[node,card] 

   end for  

end for 

V. VALIDATION OF DIAGNOSIS MODULE 

We test our self-modeling based diagnosis in a centralized 

SDN architecture based on a Floodlight controller. This 

module runs over the controller for two reasons: (1) to have a 

global view of the network, and (2) to keep the diagnosis 

framework independent from any specific southbound 

protocol. The network topology is obtained via the northbound 

interface (REST API) trough passive monitoring, to avoid 

introducing traffic overhead like ping tool. We use Mininet to 

simulate the SDN network.  

First, we prove that our self-modeling algorithm can interpret 

both the topology and the control type of SDN (out-of-band 
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and in-band). Next, we study the scalability of this algorithm 

and finally we validate the diagnosis results and their variation 

under changing network conditions. 

A. Self-modeling Validation 

We test the model generation of a linear topology with two 

switches and a controller with two hosts connected under out-

of-band (Fig. 5 (a)) and in-band control (Fig. 5 (b)).  

 
Fig. 5. Dependency graphs of linear topology in: (a) out-of-band control, (b) 

in-band 

Fig. 5 shows the resulting global dependency graph G built by 

the self-modeling algorithm. This graph G is topologically 

ordered. We analyze the output of the algorithm hereafter: 

-The self-modeling algorithm interprets the type of control: 

In out-of-band control, the self-modeling algorithm 

instantiates two control links (instances: CL1, CL2, vertices: 2, 

3), where CL1 connects both the network card of the master 

switch (instance: MS1, vertex: 13) and the network card of the 

controller (instance: C1, vertex: 11). The controller template 

(C1) has two network cards connected to two switches 

(vertices: 11, 12) through the control link instances CL1 and 

CL2. In in-band control, it only instances one control link 

(instance: CL1, vertex: 2) because the controller is only 

connected to the master switch (MS1). The controller template 

then has one network card (vertex: 10), which is connected to 

the network card of the master switch instance (vertex: 11) 

through the control link instance. The other switch is slave 

(instance: SS1) and communicates to the controller trough the 

link IL1 that connects to the master switch. 

-The self-modeling algorithm interprets the network topology: 

For both types for control, it connects both switches MS1 and 

MS2 through the inter switch link instance (IL1). It connects 

both hosts‟ instances (H1 and H2) to their respective access 

links (AL1 and AL2).The algorithm can automatically generate 

ring, star, linear and tree network topologies for different 

numbers of hosts and switches. 

-Scalability: 

We study the growth in number of vertices (V) of the global 

dependency graph G for linear and tree topologies for out-of-

band control. We analyze both topologies for a varying 

number of connected hosts (NHOSTS) from 4 up to 256. The 

number of network elements (NELEMENTS) (nodes and links) is 

the same for both topologies NELEMENTS=3NSWITCHES+2NHOSTS. 

The number of vertices in the global dependency graph G is: 

V=VCONTROLLER+VSWITCHESNSWITCHES+VHOSTSNHOSTS+VLINK(2

NSWITCHES+NHOSTS-1). If we particularize with the values for 

the aforementioned topology (Fig. 5 (a)) in out-of-band 

control: 5 vertices per host template (VHOST=5), 8 vertices per 

switch template (VSWITCHES=8), 1 vertex per link template 

(VLINK=1) and 5 vertices per controller template 

(VCONTROLLER=5), this equation becomes 

V=5+10NSWITCHES+6NHOSTS, which explains the linear trend of 

vertices with the number of hosts described in Table II. 

TABLE I.  NUMBER OF VERTICES (V) AS A FUNCTION OF THE NUMBER 

OF HOSTS (NH) 

Topology/   4 8 16 32 64 128 256 

Tree 62 130 266 538 1082 2170 4346 

Linear 72 140 276 548 1036 2180 4356 

We study the speed of the self-modeling algorithm as a 

function of the number of network elements (NELEMENTS). We 

launched the self-modeling algorithm for both linear and tree 

topologies in out-of-band control, ranging from 15 up to 500 

network elements. We averaged the computing time 20 times 

per topology to obtain more reliable figures. Fig. 6 shows an 

exponential trend in the growth of self-modeling time with the 

number of elements for both topologies. Linear topologies 

scale better than tree topologies, but in both cases the self-

modeling time remains less than 30 seconds. 

 

Fig. 6. Speed as a function of the number of elements  

B. Validation of root cause analysis   

We validate the diagnosis module in a linear topology (Fig. 7) 

in out-of-band control in two different scenarios. 

In the first scenario, we study two cases, where we force 

certain failures on the SDN infrastructure and test if the BN 

engine can pinpoint accurately the failed element. It receives 

an alarm about this failure on SDN infrastructure and it is fed 

with the states of network cards of all the network nodes as 

network observations. The BN engine correlates these 

observations with this alarm to find the root cause. 

In case 1 (Fig. 7(a)), the actual root cause is a total shutdown 

of the controller. The BN engine determines that the most 

probable root cause is the controller (94.2 %). It determines 

that the CPU (31.4 %), the VNF (31.4 %) or its configuration 

(31.4 %) could be the source of the failure. In case 2 (Fig. 

7(b)), the actual root causes are three simultaneous link 

failures in the control link CL1 and access links AL1 and AL2. 

The BN engine pinpoints those affected links CL1, AL1, AL2 
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as the most probable root causes (31.1 %), having discarded 

the rest of elements. 

 

Fig. 7. Root Cause analysis: (a) Case 1, (b) Case 2 

In the second scenario, we consider degradations in the SDN 

infrastructure affecting a service between H1 and H2. This 

degradation may be explained by monitoring the CPU use on 

the network nodes, so the BN engine incorporates these 

observations. As consequence, the calculated root changes as a 

result of changes on these observations. We run the BN engine 

with two different CPU conditions on the nodes, shown in Fig. 

8: (a) a non-loaded controller (CPU use 5%) with host H2 

heavily-loaded (CPU use 95%) and the rest of nodes with a 

CPU use between 5% and 95%), and (b) a heavily-loaded 

controller (CPU use 95%) and the rest of nodes with a CPU 

use between 5% and 95%. In situation (a), the BN engine 

determines that host H2 is the most probable root cause 

(96.6%) due to its high CPU use, and so it discards all the 

links (1 %) as well as the controller (7.9 %) as probable 

causes. In the heavy load of CPU use in the controller (b), the 

BN engine selects the controller as the most probable root 

cause to explain the degradation on the SDN infrastructure (a 

transition of root cause probability from 7.9 % to 96.9 %).  

 

Fig. 8. Root Cause Analysis on changing CPU conditions 

VI. CONCLUSIONS AND FUTURE WORK 

This paper considers solving two major problems towards 

self-diagnosis and resilient networks in the context of SDN 

and NFV: in such context it is needed to define a template or a 

model that describes the managed elements including 

physical, virtual infrastructure and other inner details such 

network cards, or CPU. To fill this gap, we define a template 

with finer granularity describing the essential managed 

elements within SDN and NFV. Furthermore, we specify and 

validate a self-modeling diagnosis that builds automatically at 

runtime the diagnosis model (dependency graph), which 

answers the challenges of updating the diagnosis model to 

identify the root causes. Our approach is suitable to any 

network topology and to any control type in SDN. In addition, 

it is independent from the controller implementation (e.g. 

Floodlight or OpenDaylight).  

Regarding future work, we will focus on the following points: 

- Reducing the uncertainty of the diagnosis: As a result of the 

finer granularity level of our proposed model, the uncertainty 

of the diagnosis is high. We foresee to adapt the methodology 

of Hounkonnou et. al. [6] to reduce the uncertainty by 

updating the model progressively with observations obtained 

from new clients. 

- Learning network element templates to diagnose new root 

causes: we target to add learning mechanism to our self-

modeling based diagnosis. Statistical tests can be used as 

discussed in [10] to learn automatically node templates 

allowing the diagnosis of unexpected new root causes. 

- Modeling VNFs dependencies: Extension of the self-

modeling algorithm to model the VNF forwarding graphs that 

compose the service of each client online. 
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