
THIS IS AN AUTHOR FILE OF AN ACCEPTED PAPER IN 1st CONFERENCE ON NETWORK SOFTWARIZATION (NetSoft2015)

Self-Modeling Based Diagnosis of Software-Defined

Networks

José Manuel Sánchez, Imen Grida Ben Yahia

Orange Labs

Paris, France

Noel Crespi

Institut-Mines Télécom, Télécom SudParis, CNRS

UMR5157

Evry, France

Abstract—Networks built using SDN (Software-Defined

Networks) and NFV (Network Functions Virtualization)

approaches are expected to face several challenges such as

scalability, robustness and resiliency. In this paper, we propose a

self-modeling based diagnosis to enable resilient networks in the

context of SDN and NFV. We focus on solving two major

problems: On the one hand, we lack today of a model or template

that describes the managed elements in the context of SDN and

NFV. On the other hand, the highly dynamic networks enabled

by the softwarisation require the generation at runtime of a

diagnosis model from which the root causes can be identified. In

this paper, we propose finer granular templates that do not only

model network nodes but also their sub-components for a more

detailed diagnosis suitable in the SDN and NFV context. In

addition, we specify and validate a self-modeling based diagnosis

using Bayesian Networks. This approach differs from the state of

the art in the discovery of network and service dependencies at

run-time and the building of the diagnosis model of any SDN

infrastructure using our templates.

Keywords— self-modeling; self-diagnosis; Bayesian networks;

SDN; NFV;

I. INTRODUCTION

SDN (Software-Defined Networks) and NFV (Network

Function Virtualization) is a novel phenomenon that is on the

wish list of major industrial players (vendors, operators,

content providers, software editors) as the means to achieve

greater flexibility in managing the network, faster service

deployment and provisioning while reducing operational costs.

SDN is expected to pave the way towards network

programmability by proposing network architecture based on

abstraction, open interfaces, and control plane-data plane

separation. On the other hand, NFV promise is to turn

traditional network functions into virtual ones called Virtual

Network Functions (VNF) and embed them into

commoditized hardware. The combination of both approaches

is commonly agreed to be the best solution and is the next

industry move despite the preliminary stage of the

management of such environment [2][3]. In particular,

resiliency properties become fundamental for both

technologies as discussed in [4]. We rely on self-diagnosis [5]

as a first step towards resiliency. Self-diagnosis is an

autonomic capability where the network is aware of any

abnormal state and diagnoses itself to determine the root cause

to perform the appropriate remediation or recovery actions.

Those actions may be based on redundancy or diversity

mechanisms, which bypass the presumed faulty network

elements.

In the SDN and NFV context, the highly changing networks

impose numerous diagnosis challenges, specifically how to

detect continuous changes and update dependencies among

virtual and physical resources.

The contribution of this paper is twofold: 1) definition of finer

granularity templates that model the dependencies among

SDN nodes (physical and logical) as well as smaller sub-

components inside them (e.g. CPU, network cards, etc).

2) Specification and validation of a self-modeling approach

that tracks changes on the network topology of the networked

nodes and their corresponding VNFs at runtime.

The structure of the paper is as follows: Section II motivates

our work and Section III summarizes the related work on

model-based network diagnosis which includes the diagnosis

techniques and the models that are in use. Section IV presents

the proposed self-model based diagnosis framework including

the template definition and the defined algorithm. Section V

presents the experimental validation. Finally, Section VI

summarizes our findings and outlines the future work.

II. MOTIVATION

We consider an end-to-end service delivered to clients through

SDN and NFV based networks. This combination of SDN and

NFV raises the following questions with respect to diagnosis:

 The first challenge is how to model the dependencies among

VNFs at runtime, as these dependencies may vary over time

and depend on the service contracted by each user (Fig. 1

(a)).

 The second challenge is how to model at runtime the

dependencies of the underlying network topology, when it is

considered dynamic (Fig. 1 (b)). The network topology is

dynamic due to several reasons like the connections and

disconnections of users to the Access Points (AP),

handovers, and especially VNF migrations and the

orchestration of new services.

 The third challenge is how to model the two types of control

in SDN, out-of-band and in-band. In out-of-band control,

THIS IS AN AUTHOR FILE OF AN ACCEPTED PAPER IN 1st CONFERENCE ON NETWORK SOFTWARIZATION (NetSoft2015)

the controller is directly connected to every switch by a

dedicated control link, but in in-band control, the controller

is only directly connected to the master switch, becoming

this one an intermediate node that connects the controller

with the rest of switches (slaves).

Fig. 1. SDN-NFV scenario: (a) end-to-end service, and (b) network topology

As it will be explained in section III, the most popular

approach for diagnosis is the model-based diagnosis. Our

approach targets to answer the challenges of diagnosis in the

context of SDN and NFV and tracks the dynamic network

topology. For this, we propose 1) a model that is suitable to

handle the specific elements to monitor within a combined

SDN and NFV scenario, and 2) a self-modeling algorithm to

enable the automation of the diagnosis model.

III. RELATED WORK ON MODEL-BASED DIAGNOSIS

The diagnosis model is generally a dependency graph. In

general, the dependency graph is manually generated from an

operational team‟s knowledge. This manual generation is valid

for static network topologies, but not for dynamic and elastic

networks such as those expected with SDN and NFV. A self-

modeling approach is presented in the literature as the

automatic generation of this model [6]. The dependency graph

is first generated from a given data set (databases [7], genetic

algorithms [8], or ontologies [9]). An inference engine (based

on algorithms such as Bayesian Networks [6][10], Occam‟s

Razor [12], or others) reasons then the dependency graph in

order to extract the root cause.

In this paper, we focus on the generation at runtime of the

dependency graph from the dynamic network topology. We

consider the following works [6][10][11][12] which we

explain and compare hereafter:

Hounkonnou et al. in [6] propose a self-modeling approach

based on patterns to enhance Bayesian Networks (BN) and

apply it to diagnose the IP Multimedia Subsystem (IMS). This

approach generates offline a generic model (pattern) that is

based on the four IMS layers (physical, functional, procedural

and service). A pattern describes the dependencies among

resources used by an IMS service. When a failure occurs in

the IMS service, the algorithm locates online instances of that

pattern in a given network topology and it generates the

corresponding BN instance. However, this work assumes that

the network topology remains static during the diagnosis

process. Furthermore, the granularity of the diagnosis covers

the four layers of IMS but it diagnoses only the network

resource level, without considering smaller sub-components

inside them. It is also worth mentioning that it does not

consider virtual environments.

Bennacer et al. in [10] base their self-modeling approach on

Chi-squared statistical tests. These tests learn the

dependencies among modeled variables. They utilize a

„significance level‟ to decide their dependencies. This self-

modeling approach considers physical symptoms as variables

on each network node. However, the granularity of the

diagnosis remains at the network node level, where smaller

sub-components are not considered. Furthermore, the

diagnosis is focused on the physical network nodes and is not

considering the logical resources (e.g. virtual resources)

running over them. In addition, inappropriate values of

„significance level‟ may lead to errors when building the

dependency graph.

Kandula et. al. in [11] present a self-modeling approach based

on templates. They define specific templates for each element

such as a machine, an application process, a neighbor set and a

path. Each template is characterized by several state variables

to achieve a detailed diagnosis. Same as [6][10], the model

granularity remains at the node level and does not consider

smaller sub-components inside them.

Bahl et. al. in [12] models the dependencies among different

services, but also the dependencies among network nodes

given by the network topology. However, they do not consider

smaller sub-components inside nodes or virtual resources.

This article advances the state of the art by describing a self-

modeling based diagnosis to discover at runtime the

dependency model of SDN-NFV infrastructures. It then

models automatically an SDN based end-to-end service, its

underlying network topology, and the type of control

implemented (in-band or out-of-band). Compared to [6],

which assumes that the network topology, services and

configuration remain static, our proposal, in the context of

SDN-NFV, assumes a continuous changing network topology.

We then create the dependency graph by instantiating

templates at runtime. Unlike [10], our self-modeling approach

builds the dependency graph from the network topology,

instead of statistical tests to avoid inaccuracies in the model.

The idea of using different templates to describe different

network elements was inspired by [11]. Our templates are

tailored to suit the SDN elements‟ particularities and VNFs

deployed in the network nodes. Contrary to [6][10][11][12],

we consider a finer dependency model granularity, that

considers smaller sub-components within a network node and

their internal dependencies (physical and logical) to be able to

diagnose a combined SDN and NFV environment where

virtual and physical parts such as network cards and CPU need

to be diagnosed. We use Bayesian Networks approach [13] for

the root cause calculation which is enhanced with our self-

modeling approach.

IV. SELF-MODELING BASED DIAGNOSIS FRAMEWORK

We present a self-modeling based diagnosis framework for

SDN (Fig. 2). We propose: (1) a template to model SDN

UA1

end-to end service

AP2

AP1

UE1

UE1

UAP1

UAP1

VNF1VNF1
VNF3VNF3VNF2VNF2

UAP1 UA1 VNF3VNF1

H1 H2

H3

H4 H5H6 H7

R1

R2

R3
R4 R6 R7

controller

User: U1 VNF2

UA1

control plane
data plane

(a)

(b)

THIS IS AN AUTHOR FILE OF AN ACCEPTED PAPER IN 1st CONFERENCE ON NETWORK SOFTWARIZATION (NetSoft2015)

elements and (2) a self-modeling approach that builds

automatically the model from the network topology.

Fig. 2. Self-Modeling based diagnosis framework

The self-modeling building block is composed of the topology

interpreter (a) and the dependency graph building (b) sub-

blocks. This block automatically builds the dependency graph

based on the network topology and the type of SDN control

(in-band and out-of-band).

The root cause calculation building block finds the root cause

through BNs. It receives a service alarm about service

degradations or unavailability and correlates this alarm with

network observations (the state of the physical and logical

resources of each network node).

A. Background on Bayesian Networks

BNs utilize probabilistic properties to perform reasoning in

uncertain domains [13]. The model, the dependency graph, is

represented by a set of vertices V describing events interlinked

by edges that represent the dependencies among vertices. The

pair describes a BN. is the dependency graph,

and contains the parameters of the BN, which take shape of

Conditional Probability Tables (CPT) that specify the

probability of every child vertex of the dependency graph

given all value combinations of its parents. The prior

probability of failure (p) is different for each vertex. The

dependency graph G is composed of observable and non-

observable vertices. To reason over the dependency graph, we

set the network observations into its observable vertices as

evidence and the BN algorithm determines the most likely root

cause(s).

B. Templates for modeling SDN networked elements

We define a network element as any type of network nodes

and links. We propose a template for each network element, so

a template for network nodes and another for links. These

templates describe the relationships between virtual and

physical sub-components inside each network element.

1) Network node template

The template of a network node (TNn in Fig. 3(a)) is

composed of a physical layer and a logical layer, following the

TMF Information framework specifications [14].

 The physical layer encompasses the state of physical

resources such as CPU and network cards. We consider two

states for those physical sub-components inside network

nodes: up or down.

 The logical layer encompasses the state of the VNFs

running inside each node. We consider that network nodes

perform one or several VNFs. For instance, the controller

runs the appropriate network function that installs the rules

in the switches as a VNF. A VNF relies on a software

process, with suitable configuration settings. The logical

layer contains three sub-layers in accordance with a three-

state life-cycle for each VNF: initiated, configured, and

activated. Initiated: where the underlying software process

of the network function is launched; configured: where the

VNF is set with the optimal attributes to perform the

network function; and activated: where the network function

is ready to accept any request.

The layers of the templates are manually predefined, but the

number of network cards or running VNF per network node

are retrieved from the network topology.

Fig. 3. Templates and Dependency Graphs: (a) network node and (b) link

Each type of network node discovered in the network topology

(controllers (C1… Cn), slave switches (SS1… SSn), master

switches (MS1… MSn), hosts (H1… Hn)) is an instance of this

template.

2) Link template

The template of a network link (TLn Fig. 3 (b)) is simpler and

it is composed of the physical layer and one vertex. Each type

of link (control links (CL1… CLn), access links (AL1… ALn),

and inter switch links (IL1… ILn)) is an instance of this

template.

C. Self-modeling building block

The self-modeling building block automatically models out-

of-band and in-band SDN networks of any topology, by

parsing the input data that contains the network topology, and

automating the model creation process.

1) Topology Interpreter: The topology interpreter is a

northbound application that requests the network topology

from the controller. The controller answers this request by

providing the network topology in a JSON format. The

topology data structure depends on the controller: for example,

OpenDaylight and a Floodlight controller provide two

different data structures, differing in the number and type of

fields and the field names (Fig. 4).

Controller

Manager
Topology

(b) Dependency Graph Building

Templates

Instantiation

Topological

sorting

Edges

Addition

Bayesian

Networks

Inference

A priori

probability

Learning

Real-time

observations

model
CPTs

evidences

alarms

status of nodes

degradations

Self-Modeling

Root Cause Analysis

Topology

Interpreter

(a)

VNF1:

Inititated

VNF1 :

Configured

VNF1:

Active

physical

logical

vCPU

VNFn:

Inititated

VNFn :

Configured

VNFn:

Active

…

…

…

…

Link

Network Node Template TNn

Network Link Template TLn

physical

(a)

(b)

Network

Card1

Network

Cardn

1

2 3

4

6

8 9

7

5

1

Dependency Graph GNn

LinkjLinki

Dependency Graph GLn

GLi GLj

GNi GNiNodei Nodej

{"hostConfig":
[{"dataLayerAddress":"00:00:00:00:00:01",
"nodeType":"OF",
"nodeId":"00:00:00:00:00:00:00:01",
"nodeConnectorType":"OF",
"nodeConnectorId":"1",
"vlan":"0","staticHost":false,
"networkAddress":"10.0.0.1"}]} (a) (b)

[{"entityClass":"DefaultEntityClass",
"mac":["00:00:00:00:00:01"],
"ipv4":["10.0.0.1"],"vlan":[],
"attachmentPoint":
[{"switchDPID":"00:00:00:00:00:00:00:01"
,
"port":1,"errorStatus":null}],
"lastSeen":1401877225763}]

(1)

(2)

(3)

THIS IS AN AUTHOR FILE OF AN ACCEPTED PAPER IN 1st CONFERENCE ON NETWORK SOFTWARIZATION (NetSoft2015)

Fig. 4. JSON data structures provided by: (a) OpenDaylight, (b) Floodlight

Thus, in a second stage, the topology interpreter classifies

each network element into one of the following types

(controllers (Cj), slave switches (SSj), master switches (MSj),

hosts (Hj), control links (CLj), access links (ALj), and inter

switch links (ILj). The result is then the network descriptor,

which contains the network elements (nodes and links) at

instant t, and the link descriptor, which specifies the end

points of each link.

2) Dependency graph building block:

This block builds the global dependency graph (G) from the

network descriptor. It is based on a three-step algorithm which

we call: Template instantiation, topological sorting, and edge

addition.

I) The template instantiation algorithm

This algorithm receives as input the network descriptor. It

provides as output the global dependency graph G composed

of the dependency graphs (GLn or GNn) built from the

templates of each network element. It follows this

methodology for each network element found in the network

descriptor:

 Identifies the type of network element

 Instantiates its corresponding template (TLn for links and

TNn for nodes)

 Builds its associated dependency graph (GLn for links and

GNn for nodes) from the instantiated template

 Appends the dependency graph into the global dependency

graph G.

Each dependency graph (GLn or GNn) contains edges called

here EINSIDE. EINSIDE edges (in dash in Fig. 3) depict the

dependencies among sub-components inside each dependency

graph (GLn or GNn). Each vertex in GLn or GNn is a state

variable described by a different CPT. A probability of failure

(PFAILURE) is defined for each vertex even though the parents

vertices are functioning. As an example, PFAILURE for the

network card (NC) vertex, P(NC=down) is p, despite the

proper functioning of its parent vertex (vCPU).

The vertices of the global dependency graph G are not

topologically sorted yet. We call these vertices as VUNSORTED.
Algorithm: Templates instantiation

IN: Network Descriptor
IN: Templates

{THOST,TSLAVE,TMASTER,TCONTROLLER,TACCESS_LINK,TCORE_LINK,TCONTROL_LINK}

OUT: Global Dependency Graph G(VUNSORTED,EINSIDE)

for each element in the network descriptor

 inspection of type of element

 if element is of type link
 TLnăinstatiation of link template {TACCESS_LINK,TCORE_LINK,TCONTROL_LINK}

 GLn ăextract dependency graph of template TLn

 Gă append GLn to global dependency graph

 else

 TNnăinstatiation of node template {THOST,TSLAVE,TMASTER,TCONTROLLER}

 GNn ăextract dependency graph of template TNn
 Găappend GNn to global dependency graph

 end if

end for

II) The topological sorting algorithm

It sorts topologically the vertices of the global dependency

graph G. It receives as input the dependency graph G with

non-topologically ordered vertices (VUNSORTED) and it provides

as output the same global dependency graph but topologically

sorted (VSORTED). As an example, GNn and GLn (Fig. 3)

present a topological order when separated, because any

vertex index is repeated and parents are numbered before

children vertices. However, when both are combined to obtain

the global dependency graph G, the topological order is not

respected, as both GNn and GLn contain repeated vertex

indexes (e.g. both contain value „1‟). The topological sorting

algorithm solves this issue.
Algorithm: Topological Sorting

IN: Global Dependency Graph G(VUNSORTED,EINTRA)

OUT: Global Dependency Graph G(VSORTED,EINTRA)
for each dependency graph appended to G

 for each layer in template

 obtain vertices of appended graph at current layer
 sort its vertices topologically

 end for

end for

III) The edge addition algorithm

This algorithm adds the dependencies between the previously

appended dependency graphs (GNn and GLn) by the template

instantiation algorithm. It receives as input the link descriptor

and the global dependency graph (topologically sorted).

 It puts one dependency graph of link GLn in between the

two dependency graphs of the nodes GNn to be connected

(these nodes are given in the link descriptor).

 It then adds two EINTER edges from the dependency graph of

the link GLn to the two dependency graph of nodes GNn.

EINTER depicts the dependencies between GLn and GNn. In

Fig. 3(a), the dependency graph of one node GNn has two

incoming EINTER edges from the dependency graphs of links

GLi and GLj. In Fig. 3(b), the dependency graph of one link

GLn has two outgoing edges EINTER towards the dependency

nodes of GNi and GNj.
Algorithm: Edge addition

IN: Link Descriptor, Global Dependency Graph G(VSORTED,EINSIDE)

OUT: Global Dependency Graph G(VSORTED,EINSIDE,EINTER)

for each link in Link Descriptor
 extract end points attached to link

 for each end point in link

 EINTERăadd edge from GLn[link,link] to GNn[node,card]

 end for

end for

V. VALIDATION OF DIAGNOSIS MODULE

We test our self-modeling based diagnosis in a centralized

SDN architecture based on a Floodlight controller. This

module runs over the controller for two reasons: (1) to have a

global view of the network, and (2) to keep the diagnosis

framework independent from any specific southbound

protocol. The network topology is obtained via the northbound

interface (REST API) trough passive monitoring, to avoid

introducing traffic overhead like ping tool. We use Mininet to

simulate the SDN network.

First, we prove that our self-modeling algorithm can interpret

both the topology and the control type of SDN (out-of-band

THIS IS AN AUTHOR FILE OF AN ACCEPTED PAPER IN 1st CONFERENCE ON NETWORK SOFTWARIZATION (NetSoft2015)

and in-band). Next, we study the scalability of this algorithm

and finally we validate the diagnosis results and their variation

under changing network conditions.

A. Self-modeling Validation

We test the model generation of a linear topology with two

switches and a controller with two hosts connected under out-

of-band (Fig. 5 (a)) and in-band control (Fig. 5 (b)).

Fig. 5. Dependency graphs of linear topology in: (a) out-of-band control, (b)

in-band

Fig. 5 shows the resulting global dependency graph G built by

the self-modeling algorithm. This graph G is topologically

ordered. We analyze the output of the algorithm hereafter:

-The self-modeling algorithm interprets the type of control:

In out-of-band control, the self-modeling algorithm

instantiates two control links (instances: CL1, CL2, vertices: 2,

3), where CL1 connects both the network card of the master

switch (instance: MS1, vertex: 13) and the network card of the

controller (instance: C1, vertex: 11). The controller template

(C1) has two network cards connected to two switches

(vertices: 11, 12) through the control link instances CL1 and

CL2. In in-band control, it only instances one control link

(instance: CL1, vertex: 2) because the controller is only

connected to the master switch (MS1). The controller template

then has one network card (vertex: 10), which is connected to

the network card of the master switch instance (vertex: 11)

through the control link instance. The other switch is slave

(instance: SS1) and communicates to the controller trough the

link IL1 that connects to the master switch.

-The self-modeling algorithm interprets the network topology:

For both types for control, it connects both switches MS1 and

MS2 through the inter switch link instance (IL1). It connects

both hosts‟ instances (H1 and H2) to their respective access

links (AL1 and AL2).The algorithm can automatically generate

ring, star, linear and tree network topologies for different

numbers of hosts and switches.

-Scalability:

We study the growth in number of vertices (V) of the global

dependency graph G for linear and tree topologies for out-of-

band control. We analyze both topologies for a varying

number of connected hosts (NHOSTS) from 4 up to 256. The

number of network elements (NELEMENTS) (nodes and links) is

the same for both topologies NELEMENTS=3NSWITCHES+2NHOSTS.

The number of vertices in the global dependency graph G is:

V=VCONTROLLER+VSWITCHESNSWITCHES+VHOSTSNHOSTS+VLINK(2

NSWITCHES+NHOSTS-1). If we particularize with the values for

the aforementioned topology (Fig. 5 (a)) in out-of-band

control: 5 vertices per host template (VHOST=5), 8 vertices per

switch template (VSWITCHES=8), 1 vertex per link template

(VLINK=1) and 5 vertices per controller template

(VCONTROLLER=5), this equation becomes

V=5+10NSWITCHES+6NHOSTS, which explains the linear trend of

vertices with the number of hosts described in Table II.

TABLE I. NUMBER OF VERTICES (V) AS A FUNCTION OF THE NUMBER

OF HOSTS (NH)

Topology/ 4 8 16 32 64 128 256

Tree 62 130 266 538 1082 2170 4346

Linear 72 140 276 548 1036 2180 4356

We study the speed of the self-modeling algorithm as a

function of the number of network elements (NELEMENTS). We

launched the self-modeling algorithm for both linear and tree

topologies in out-of-band control, ranging from 15 up to 500

network elements. We averaged the computing time 20 times

per topology to obtain more reliable figures. Fig. 6 shows an

exponential trend in the growth of self-modeling time with the

number of elements for both topologies. Linear topologies

scale better than tree topologies, but in both cases the self-

modeling time remains less than 30 seconds.

Fig. 6. Speed as a function of the number of elements

B. Validation of root cause analysis

We validate the diagnosis module in a linear topology (Fig. 7)

in out-of-band control in two different scenarios.

In the first scenario, we study two cases, where we force

certain failures on the SDN infrastructure and test if the BN

engine can pinpoint accurately the failed element. It receives

an alarm about this failure on SDN infrastructure and it is fed

with the states of network cards of all the network nodes as

network observations. The BN engine correlates these

observations with this alarm to find the root cause.

In case 1 (Fig. 7(a)), the actual root cause is a total shutdown

of the controller. The BN engine determines that the most

probable root cause is the controller (94.2 %). It determines

that the CPU (31.4 %), the VNF (31.4 %) or its configuration

(31.4 %) could be the source of the failure. In case 2 (Fig.

7(b)), the actual root causes are three simultaneous link

failures in the control link CL1 and access links AL1 and AL2.

The BN engine pinpoints those affected links CL1, AL1, AL2

6 74

22

14

23

13 15

29

34

9

19

26

36

31

10

20

27

37

32

31

11

21

33

28

2 5

17

25

16 18

30

35

24

8

5 63

20

12

21

11 13

27

32

8

17

24

34

29

9

18

25

35

30

1

10

19

31

26

2 4

15

23

14 16

28

33

22

7

C1 CL1 MS1 IL1AL2 H2H1AL1MS2
CL2(a)

12

controller master switches access links hostscontrol links core link

logical

physical

C1 CL1 MS1 IL1AL2 H2H1AL1SS2

controller master switches access links hostscontrol link core link

logical

physical

(b)

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

Linear Topology

Tree Topology

time (s)

50 100 150 200 250 300 350 400 450 500 Ne

20

25

5

10

15

0

THIS IS AN AUTHOR FILE OF AN ACCEPTED PAPER IN 1st CONFERENCE ON NETWORK SOFTWARIZATION (NetSoft2015)

as the most probable root causes (31.1 %), having discarded

the rest of elements.

Fig. 7. Root Cause analysis: (a) Case 1, (b) Case 2

In the second scenario, we consider degradations in the SDN

infrastructure affecting a service between H1 and H2. This

degradation may be explained by monitoring the CPU use on

the network nodes, so the BN engine incorporates these

observations. As consequence, the calculated root changes as a

result of changes on these observations. We run the BN engine

with two different CPU conditions on the nodes, shown in Fig.

8: (a) a non-loaded controller (CPU use 5%) with host H2

heavily-loaded (CPU use 95%) and the rest of nodes with a

CPU use between 5% and 95%), and (b) a heavily-loaded

controller (CPU use 95%) and the rest of nodes with a CPU

use between 5% and 95%. In situation (a), the BN engine

determines that host H2 is the most probable root cause

(96.6%) due to its high CPU use, and so it discards all the

links (1 %) as well as the controller (7.9 %) as probable

causes. In the heavy load of CPU use in the controller (b), the

BN engine selects the controller as the most probable root

cause to explain the degradation on the SDN infrastructure (a

transition of root cause probability from 7.9 % to 96.9 %).

Fig. 8. Root Cause Analysis on changing CPU conditions

VI. CONCLUSIONS AND FUTURE WORK

This paper considers solving two major problems towards

self-diagnosis and resilient networks in the context of SDN

and NFV: in such context it is needed to define a template or a

model that describes the managed elements including

physical, virtual infrastructure and other inner details such

network cards, or CPU. To fill this gap, we define a template

with finer granularity describing the essential managed

elements within SDN and NFV. Furthermore, we specify and

validate a self-modeling diagnosis that builds automatically at

runtime the diagnosis model (dependency graph), which

answers the challenges of updating the diagnosis model to

identify the root causes. Our approach is suitable to any

network topology and to any control type in SDN. In addition,

it is independent from the controller implementation (e.g.

Floodlight or OpenDaylight).

Regarding future work, we will focus on the following points:

- Reducing the uncertainty of the diagnosis: As a result of the

finer granularity level of our proposed model, the uncertainty

of the diagnosis is high. We foresee to adapt the methodology

of Hounkonnou et. al. [6] to reduce the uncertainty by

updating the model progressively with observations obtained

from new clients.

- Learning network element templates to diagnose new root

causes: we target to add learning mechanism to our self-

modeling based diagnosis. Statistical tests can be used as

discussed in [10] to learn automatically node templates

allowing the diagnosis of unexpected new root causes.

- Modeling VNFs dependencies: Extension of the self-

modeling algorithm to model the VNF forwarding graphs that

compose the service of each client online.

I. ACKNOWLEDGMENTS

This work is partly funded by the French ANR under the

ANR-14-CE28-0019 REFLEXION project

REFERENCES

[1] W. John, K. Pentikousis, G. Agapiou et al., “Research Directions in
Network Service Chaining,” in IEEE SDN4FNS, 2013.

[2] R.P. Esteves, L.Z. Granville, R. Boutaba, "On the management of virtual
networks," in Communications Magazine, IEEE , vol.51, no.7, pp.80,88,
July 2013.

[3] D. Kreutz et al., “Software-Defined Networking: A Comprehensive
Survey,” to be published in Proc. IEEE, 2015;

[4] J. Sanchez, I. Grida Ben Yahia, et. al., “Softwarized 5G networks
resiliency with self-healing,” 1st International Conference on 5G for
Ubiquitous Connectivity (5GU), 2014.

[5] John O. Kephart and David M. Chess, "The Vision of Autonomic
Computing," in IEEE Computer, Vol. 36, No. 1, pp. 41-50, 2003.

[6] C. Hounkonnou, “Active Self-Diangosis in Telecommunication
Networks”. PhD thesis. Université de Rennes 1. July 2013.

[7] S. Singh and T. Graepel, “Automated probabilistic modelling for
relational data”, in CIKM, pages 1497–1500, 2013.

[8] R. Kabli, Herrmann, F. McCall J., “A Chain-Model Genetic Algorithm
for Bayesian Network Structure Learning,” GECCO, London, 2007

[9] S. Fenz, “An ontology-and bayesian-based approach for determining
threat probabilities,” In Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, pages 344–354.
ACM, 2011.

[10] L. Bennacer, L. Ciavaglia, et.al., “Optimization of fault diagnosis based
on the combination of Bayesian Networks and Case-Based Reasoning,”
in NOMS, 2012 IEEE , vol., no., pp.619,622, 16-20 April 2012.

[11] S. Kandula, R. Mahajan, et. al, “Detailed diagnosis in enterprise
networks,” in SIGCOMM, 2010.

[12] P. Bahl, R. Chandra, et. al., “Towards highly reliable enterprise network
services via inference of multi-level dependencies,” in SIGCOMM,
2007.

C1 CL1 S1 KL1AL2 H2H1AL1S2CL2

up

down

Evidences:

C1 CL1 S1 KL1AL2 H2H1AL1S2CL2

Root Cause

Probability (%):

(a) Case 1

(b) Case 2

0.9 0.9

0.40.431.4
0.6

31.1 31.1

0.9

0.5 0.5

31.1

0.6

0.9

0.30.30.3

0.6
0.6

0.6
31.4

31.4

0.4

0.6

0.4

0.6

0.6 0.6

H1 H2

S1 S2

C1

CL1 CL2

AL2

KL1

AL1

Case1: 94.2

Case2: 0.9

Case1: 1.9

Case2: 1.8

Case1: 1

Case2: 1.1

Case1: 0

Case2: 31.1

Case1: 0

Case2: 31.1

Case1: 1

Case2: 1.1

Case1: 0

Case2: 31.1

Case1: 1.9

Case2: 1.8

C1 CL1 MS1 AL1 AL2 H2H1MS2 KL1CL2

40

60

80

100

R
o

o
t

C
au

se
 P

ro
b

ab
il

it
y
 o

f
N

et
w

o
rk

 E
le

m
en

ts
(%

)

10

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

CPUs(%)[5 20 40 2 95]

CPUs(%)[95 2 10 35 5]

20

90

70

50

30

Case (a)

Case (b)

C1 S1 H2H1S2Network nodes:

controller control links switches access links core link hosts

THIS IS AN AUTHOR FILE OF AN ACCEPTED PAPER IN 1st CONFERENCE ON NETWORK SOFTWARIZATION (NetSoft2015)

[13] I. Ben-Gal, "Bayesian Networks". Encyclopedia of Statistics in Quality
and Reliability. John Wiley & Sons, 2007.

[14] TMF Information Framework. Available at:
http://www.tmforum.org/zoom/16335/home.html

http://en.wikipedia.org/wiki/John_Wiley_%26_Sons
http://www.tmforum.org/zoom/16335/home.html

