CONVERGENCE OF APPLICATION SERVICES IN
NEXT GENERATION NETWORKS

Widgets and Composition Mechanism
for Service Creation by Ordinary Users

Nassim Laga, France Telecom

Emmanuel Bertin, France Telecom and Telecom Sud Paris

Roch Glitho, Concordia University and Telecom Sud Paris

Noel Crespi, Telecom Sud Paris

ABSTRACT

Significant research work has been conducted
in software engineering to facilitate and speed
up the process of service creation by experienced
developers. Recently, however, service creation
by ordinary users has attracted more and more
attention as non-technical people have begun to
play an active role in service life cycles, especial-
ly in a Web 2.0 context. In addition, service cre-
ation by ordinary users tackles the heterogeneity,
the dynamicity, and the spontaneous nature of
users needs. We show that current technologies
are mainly inspired by previous approaches and
architectures conceived for experienced develop-
ers, which means that they are not really ade-
quate for service creation by ordinary users. This
article proposes a novel service creation environ-
ment for ordinary users. It is made up of a new
Widget abstraction layer that exposes the graphi-
cal user interface of services as reusable compo-
nents, and relies on a two-step mechanism to
compose these services at runtime. A proof of
concept prototype has been built. The new
abstraction layer offers interfaces that are much
more user friendly than the current service cre-
ation tools. It also enables the different capabili-
ties of a service to be seamlessly handled
throughout its usage lifecycle.

INTRODUCTION

Users’ needs are dynamic and spontaneous. This
means that most of their needs cannot be antici-
pated long in advance but just arise in a given
situation. In software engineering, two human
activities are still necessary to address users’
needs: specifying these needs (performed by
users and/or a marketing team), and developing
the corresponding services (performed by an IT
team). To enable more spontaneous service cre-
ation, the current trend is to guide ordinary
users in specifying their needs for themselves,
with a given formalism, and then to automate
the service development process. For example,

service creation environments like Yahoo Pipes
enable users to create their own services by
assembling service building blocks.

However, this service creation activity, by its
very nature, must be performed at design time
and not at runtime. In other words, spontaneous
needs, which mostly emerge at runtime when a
user is utilizing his or her services, cannot be
met immediately. Instead, the user needs to quit
her/his working environment and go into a ser-
vice creation environment, where she/he plays a
programmer role. This approach lacks dynamici-
ty. Moreover, it still requires basic computing
skills from ordinary users.

In this article, we propose a novel service
creation environment (SCE) for end users. It is
based on service oriented architecture (SOA)
principles [1]. SOA enables providers to wrap
complex software features within well defined
and reusable interfaces, which are made avail-
able to third parties. This method is usually
considered to be the most appropriate means
to handle a high level of heterogeneity. The
SCE we propose enables ordinary users to
spontaneously create services in order to
respond to their spontaneous needs. For
instance, a user who has loaded an enterprise
directory service into his/her daily working
environment (to search for contacts) and a
telephony service (to make calls) can directly
compose these two services inside this working
environment to call various contacts found by
the directory service.

The proposed environment comprises a wid-
get-based abstraction layer and a two-step ser-
vice composition mechanism. A widget is a
reusable graphical user interface (GUI) that
gives access to one or more functionalities of a
service. Ordinary users can use the abstraction
layer and rely on the first step to construct com-
posite services automatically with little effort.
They can even go further by customizing the
service with additional actions during the sec-
ond step. Our implementation is based on Web
technologies (XHTML, Microformat,

52

0163-6804/12/$25.00 © 2012 IEEE

IEEE Communications Magazine ® March 2012

JavaScript, and CSS). The next section presents
the requirements and discusses the related
work. In the third section, we present the essen-
tial features of this novel service creation envi-
ronment, followed by its implementation and
validation. In the conclusions, we summarize the
key features of the proposal, introduce briefly
the experiments that were conducted with it in
France Telecom laboratories, and discuss the
lessons learned.

REQUIREMENTS AND RELATED WORK

This section begins by defining the requirements.
The two categories of related work we have
identified, programming-based SCE and graphi-
cal SCE, are then reviewed.

REQUIREMENTS

In order to simplify the service creation process
to a level that targets ordinary users, we have
defined a set of requirements. The first require-
ment is related to the spontaneous nature of
users’ needs. It is very important to enable spon-
taneous compositions that can respond to spon-
taneous needs. Unlike planned needs, which can
be addressed following a design-time service cre-
ation process, and which involves two human
activities (specifying the need and developing it)
realized by two human entities (an end user [or
marketing team] and an IT team), spontaneous
needs should be addressed spontaneously at run-
time, directly by users.

The second requirement is related to the
composition environment. Unlike experienced
developers who are familiar with integrated
development environments (IDEs) and other
specialized software development environments,
ordinary users are most familiar with their daily
working environment (e.g., web portals or email
applications), and very few of them will know
how to use IDEs. Therefore, it is this daily work-
ing environment that should be utilized for ser-
vice creation, and any required tools must be
fluidly integrated into this type of environment.
The third requirement is in relation to the gran-
ularity of the services. These must be functional-
ly meaningful to ordinary users. In other words,
the granularity of the services must be sufficient-
ly high to provide an added value and be under-
standable to ordinary users.

PROGRAMMING-BASED SERVICE CREATION
ENVIRONMENT

Service creation environments have historically
been based on programming, starting from
assembly languages to the current development
environments, such as the J2EE and .NET plat-
forms. In addition to providing all the tools
required for creating, testing, and deploying ser-
vices, current environments are usually empow-
ered with SOAP Based Web Services [2] and
RESTFul Web Services [3], which facilitate and
speed up the service creation process.

From the conceptual viewpoint, these tech-
nologies enable providers to wrap complex soft-
ware features within standardized and reusable
interfaces. These interfaces are made available
to third parties. This could be achieved in a cen-

tralized way, through a common registry sup-
ported by the development environment; or in
an ad hoc way, through a service provider web-
site, for example.

Programming-based service creation environ-
ments, based on SOAP Based Web Services or
RESTful Web services, are by definition oriented
to developers needs. This makes them unrespon-
sive to several of the requirements listed above.
Their main limitation is that they are based on
programming APIs, which ordinary users do not
understand and therefore cannot use.

Several attempts to facilitate the service cre-
ation process based on SOAP-Based Web Ser-
vices have nonetheless been made in the business
area. A typical approach is to rely on the service
composition concept via scripting languages such
as Business Process Execution Language (BPEL)
[4] and Service Logic Graphs (SLG) [5]. Service
composition is then the action of combining two
or more services, following a logic defined by
means of a scripting language. This logic is
developed through mappings between the out-
puts of some services and the inputs of others,
combined with other operators such as loops,
conditions, forks, joins, and so on.

Even though these scripting languages facili-
tate the creation process, they are still not appro-
priate for use by ordinary users. First, the
operations still remain too complex. Second, the
corresponding tools are usually integrated into
traditional development environments (e.g., the
J2EE and .NET platforms) instead of being inte-
grated in an ordinary users’ daily working envi-
ronment. Finally, it has been shown [6] that
session control and the event-driven nature of
telecommunication services are difficult to mas-
ter by experienced programmers, let alone ordi-
nary users, using SOAP-based and RESTFul
web services [6].

Twelve participants were involved in the
study presented in [6]; all were acquainted with
SOA and Session Initiation Protocol (SIP) and
had at least two years of programming experi-
ence. This study also showed that the granularity
of the basic services used in service composition
is an important parameter of the intuitiveness of
service composition. In other words, the higher
the abstraction level, the more intuitive a service
creation tool will be.

GRAPHICAL-BASED SERVICE CREATION
ENVIRONMENT

To speed up the service creation process even
more, and to make it accessible to ordinary
users, graphic tools (e.g., Eclipse BPEL Editor
and Sedna [7]) have emerged, first in the busi-
ness community and then more widely in the
Web 2.0 community. Some of these are based on
the XML languages mentioned in the previous
section (e.g., BPEL). They represent the differ-
ent operations and web service calls with black
boxes that are connected to each other so that
the data flow between services and their execu-
tion sequences can be defined.

While these tools definitely make the cre-
ation process easier and faster, they remain tar-
geted to experienced developers. First of all,
they are based on IDEs, which are difficult for

|
Programming-based
service creation
environments, based
on SOAP Based Web
Services or RESTful
Web services, are by
definition oriented to
developers needs.
This makes them
unresponsive to
several of the
requirements
listed above.

IEEE Communications Magazine ® March 2012

53

significantly enhanced

ordinary users, since

performed manually

While these new
tools have

the intuitiveness of
Mashup creation,
they are still too
complicated for

the composition is

based on the
flowchart concept.

Expects Inputs Of | Functionality Description

Generates OutputsOf

Functionality URL| 1

Widget
Has
1
Has :
Widget Description Refer To Index URL
1
Include
Generates
1.%
Generates 1 1
v
GUI
Refer To +Outputs
1.%

Functionality | 1..* Accesses

Has

0.*

Data Type

+Outputs Tagged With

Figure 1. Widget data model.

ordinary users to use. Second, it is necessary to
understand different computing concepts such as
flowcharts, inputs, and outputs to create new
services.

The successful adoption of Web 2.0 principles
by ordinary users (collective intelligence, trusting
the user as a co-developer) has encouraged the
application of the same principles in the service
creation field [8]. Concepts such as mashups,
including social mashups [9] and enterprise
mashups [10], have emerged. A mashup is basi-
cally a web page that composes and combines
several services data sources. A typical example
of a Mashup application is HousingMaps, which
combines a house search service and Google
Maps. Some Mashups have the peculiarity of
combining the GUI of a service. For instance, all
Mashups based on Google Maps reuse its GUI.

Existing mashup creation tools are mainly
based on the flowchart concept. MARMITE [11]
and Yahoo Pipes are examples of such an
approach. Two important limitations should be
highlighted in these tools. First, the flowchart
basis is not intuitive enough for ordinary users.
Concepts like mapping the outputs of some ser-
vices and inputs of others, loops, conditions, and
regular expressions (for adapting the outputs of
some services with inputs of others) are not
understandable by most ordinary users. The
experimentation achieved in [11] confirms this
assertion. Second, even though the mashup cre-
ation process is supported with an advanced
GUI, accessible by ordinary users through their
web browser, the Uls of the mashups that could
be created are very basic, usually limited to a set
of patterns like Map and RSS list.

Also based on the flowchart concepts, a new
mashup creation approach has emerged, with a
focus on the GUI aspects. IBM Mashup Center
[12] and EZWEB [10] are examples of such an

approach. These tools are based on the widget
concept. The widgets are loaded into a widget
environment, through which the user accesses,
consumes, and optionally defines a flowchart-
based composition of these widgets in order to
personalize this environment according to his or
her own needs and habits. While these new tools
have significantly enhanced the intuitiveness of
mashup creation, they are still too complicated
for ordinary users, since the composition is per-
formed manually based on the flowchart con-
cept.

THE PROPOSED SERVICE CREATION
ENVIRONMENT

In this section we detail the widget abstraction
layer, the two-step composition mechanism, and
then we illustrate through a scenario how the
different components interact.

THE WIDGET ABSTRACTION LAYER

The widget-based abstraction layer is character-
ized by two components: the widget and the wid-
get environment. The widget environment is in
charge of providing a customizable user environ-
ment, where ordinary users not only access their
preferred widgets, but also combine them
according to their needs, processes, and habits.

The Widget — Figure 1 shows a simplified data
model of a widget. Each widget has both an
implementation and a description (contract).
Each widget may provide one or several func-
tionalities, which are described within the widget
description file. Each functionality description
contains an abstract description part and an
implementation description part. The abstract
description part describes the functionality, the

54

IEEE Communications Magazine ® March 2012

Al content

B Gadget tabt W & tab2 tab 3
[

& directory

Fit et name:

Edition 2 [7 Room booking

T Agenda

©

= Book a meeting room

® Check booked meeting rooms

“netRD intranoo |

Authentication ; —

i New tab

edition 3 B Locate Edition %

I

gf the wikcws [plan | Sateiine |
Kt

h %% UIYf'J'cs

Duveneck!

Edition 2 =
March 20th, 2010 - *

No meeting

Widget
discovery
capability

Widget content
(response of the
index URL)

Widget
environment

Figure 2. Widget environment.

inputs it requires, and the outputs it generates.
The functionality, the inputs, and the outputs
are described using a semantic dictionary. We
decided to use Microformats [13] as the seman-
tic dictionary. We have used for instance the
hCard format to describe contact information
and hCalendar to describe calendar events.

The description of the widget implementation
refers to the index URL that enables the access
to the widget’s welcome screen; it also refers to
the URL that gives access to each functionality.
The GUI is an important element in widget
design. Each functionality generates a GUI that
includes the outputs tagged semantically using
the same semantic tag included in the widget
description.

Widget Environment — The widget environ-
ment is characterized by two capabilities: the
widget discovery, and the widget aggregation
capability. The widget discovery capability makes
it possible for users to see which widgets are
available. It can also include advanced widget
search mechanisms, for example, based on
semantic technologies, but this is out of the
scope of this article. The selected widgets will be
instantiated each time the user accesses the wid-
get environment. Each user organizes their wid-
get environment into one or several tabs,
composed of one or several columns. Each wid-
get instance is associated with the column of a
given tab. The user can also move widgets from
one column to another and from one tab to
another. Figure 2 shows an example of the wid-
get environment GUI.

THE Two-STEP COMPOSITION IMIECHANISM
The two-step composition mechanism is per-
formed by the widget combination component
depicted in Fig. 3. It comprises four subcompo-
nents: a communication manager, an application

Widget combination

Process omposite List of loaded
manager service .- widgets
definition o™ functionalities
Ar// »
Communication [manager |<-| API |
. : T
iWidget 1 Widget 2

(Gul) (

GUI

P | |5

[Functionality description]

[Functionality description]

First step actions
—— Second step actions

Figure 3. The widget combination component.

programming interface (API), a process manag-
er, and a data structure that contains a list of
functionalities that are present in the widget
environment.

The first step of composition is realized auto-
matically and involves the communication man-
ager, the API, and the list of the loaded
functionalities. The communication manager
(detailed in [14]) is in charge of reading the
functional description of each widget loaded by
the user (which includes reading the URL of the
functionality, the inputs expected by the func-
tionality, and the type of outputs it will gener-
ate), and updating the list of the widgets’
functionalities. In addition, at runtime, each wid-
get can modify the functionalities it provides
using the API component. This is important for

IEEE Communications Magazine ® March 2012

55

graphically presented
to the user through

added to the GUI of

Each link is

a GUI element

the source Widget
(the Widget that

generates the data

(output) needed as
the inputs to launch

the destination
functionality).

Two step

mechanism

composition Widget combination

Widget environment

Directory widget

Widget-based

abstraction — GUI in

q, - Tele{prwndget q,
7

el

5 g

[- Search contact functionality

- Make call functionality
- Receive call functionality

i = e

Backend

layer Directory API

Telephony API

Figure 4. High-level view of the proposed SCE.

the widgets that manage different states and dif-
ferent capabilities in each state. For example, a
telephony widget cannot initiate a new call when
a user is already in communication with another
user.

Based on the list of the loaded functionali-
ties, the communication manager is also in
charge of detecting the semantic matching
between them, and creating (optional) links
between the widgets. There are three types of
semantic matching: exact matching, inclusion,
and reverse inclusion. The matching is exact
when one output type of a functionality of a
source widget is exactly the same as an input
type of a destination widget’s functionality. It is
an inclusion when the output type of a function-
ality of a source widget is a subelement of an
input type of a functionality of a destination wid-
get. Finally, it is a reverse inclusion when the
input type of a destination widget’s functionality
is a subelement of an output type of a source
widget’s functionality.

Through this first step, the communication
manager creates a composite service that con-
nects all of the connectable widgets. This com-
posite service is defined as a graph G <N, L>,
where nodes N represent the list of widgets that
are loaded in the widget environment, and links
L represent the links between the different wid-
gets. L is a sextuplet L (Source-Widget, Output-
Type, Destination-Widget,
Destination-Functionality, Input-Type, and Link-
Type). Source-Widget — an element on N — is
the source widget of the link. Output-Type is
the type of the output that will be generated by
a functionality of Source-Widget. Destination-
Widget — an element of N — is the destination
widget that provides the destination functionali-
ty (Destination-Functionality) of the link. Desti-
nation-Functionality is invoked when the link is
executed. Input-Type is the input parameter
expected by Destination-Functionality. Finally,

Link-Type is the type of the link (automatic or
at the user initiative).

Each link is graphically presented to the user
through a GUI element added to the GUI of the
source widget (the widget that generates the
data [output] needed as the inputs to launch the
destination functionality).

The second step of the composition mecha-
nism mainly involves the process manager com-
ponent (Fig. 3). The goal of this second step is
to personalize a composite service that was cre-
ated automatically in the first step. For this pur-
pose, the process manager component maintains
a composite service definition (Fig. 3), which is
initialized to the graph G created in the first
step. The process manager component also asso-
ciates two GUI elements to each created link,
which enable the user to delete the link or modi-
fy its type. By acting on the different links, the
user customizes the composite service. This
mechanism is detailed in [15].

END-TO-END SCENARIO

To illustrate the end-to-end scenario, we consid-
er the layout and indicators in Fig. 4. We assume
that the user has loaded an enterprise directory
widget and a telephony widget into his/her work-
ing environment. The enterprise directory widget
provides a search functionality, based on either a
phone number or a name. In both cases, it gen-
erates contact information that includes first
name, last name, address, phone number, and so
on. The telephony widget provides two function-
alities: making calls and receiving calls. Both the
enterprise directory and telephony widgets have
access to their backend service (rows 1 and 2)
via web services or any other technology. The
communication between the widget and the ser-
vice it renders is in charge of the widget devel-
oper.

When these two widgets are loaded into the
widget environment, the widget combination

56

IEEE Communications Magazine ® March 2012

_ </functionality>

)) <non-functional-parameter>
Non-functionality

<?xml version="1.0" encoding="windows-1250"7>
<module name="directoryFT” indexUrl="http://../services/directory

r<functionality name="searchContact”
actionUrl="http://../services/directory/dir.php”
label="search FTRD"
goal="readDirectory”

iconUrl="http://../img/persor
overviewUrl="http://../directory.jpg” Goal of the functionality)

. i <inputs>
Functionality <data name="PhoneNumber” type="tel” />
declaration <data name="contactFirstName” type="given-name” /> Expected
<data name="contactLastName” type="family-name” /> inputs
<data name="emailAddress” type="email"” />
</inputs>
<outputs>
<data name="contactInformation” type="hCard" />} Expected
</outputs> outputs

<parameter-name>provider</parameter-name>
<parameter-value>provider</parameter-value>

Widget index

Functionality URL

Non-functional

declaration parameter
</non-functional-parameter>
</.r%odule>
Figure 5. Widget description file example.
component starts the first step of the composi- IMPLEMENTATION

tion. First, it reads the functional description of
each widget (rows 3 and 4). Based on the func-
tional description, it detects semantic matching
between the widgets. Next, it automatically cre-
ates links between them (rows 5 and 6). In our
example, two semantic matchings will be detect-
ed. The first one is between the contact cards
generated by the enterprise directory widget
(which contains phone numbers) and the phone
number expected as an input parameter by the
telephony widget. The second matching is
between the call session generated by the tele-
phony widget, which contains phone numbers,
and the phone number expected as an input
parameter of the search functionality of the
enterprise directory widget.

For each semantic matching detected, the
widget combination component creates a link
represented through a GUI element in the wid-
get GUI (rows 5 and 6). In our example, a link
will be created in the enterprise directory widget
to the telephony widget, and another from the
telephony widget to the enterprise directory wid-
get. The former enables the user to launch the
telephony widget from the enterprise directory
widget (row 7), and the latter allows the user to
search for caller information in the enterprise
directory widget (row 8).

The second composition step involves the
user. It enables a user to delete or automate the
links that were created automatically in the first
step. This is performed through the GUI ele-
ment associated with each created link. When
the user clicks on that GUI element, the widget
combination component is notified, and the link
will be modified/deleted (rows 9 and 10). In our
example, the user may want to automate the link
between the telephony widget and the enterprise
directory widget so that the search functionality
of the directory widget will be launched auto-
matically for each incoming call in the telephony
widget.

In this section we provide the end-to-end imple-
mentation details of the widget-based SCE.

WIDGET ABSTRACTION LAYER

Widget Implementation — As detailed in the
design section, each widget has a description
part and an implementation part. In our case,
the description part is realized through an XML
file. An example is illustrated in Fig. 5. First we
define the name of the widget and the index
URL used to access the widget’s welcome screen.
Second, each functionality is defined through its
URL, its goal, the input it expects, and the out-
put it generates. Additional nonfunctional
parameters can also be added.

The implementation of a widget is associated
with its description file. Each widget must be
accessible through the index URL specified in
the description file. The implementation uses
current web standards such as XHTML,
JavaScript (JS), and CSS. Each functionality that
is provided must be accessible through the URL
as well, using the HTTP GET or HTTP POST
methods, as specified in the description file. The
input parameters are passed as GET or POST
parameters in the HTTP request, using the
parameter names specified in the description as
the parameter names in the request. The outputs
of each functionality are annotated in the GUI
(the GUI is defined through the XHTML con-
tent rendered by the functionality URL), using
the tag specified in the description file.

Widget Environment Implementation —
Figure 6 shows the main components included in
the widget environment implementation.

The GUI component is a web page that pro-
vides the front-end GUI. It enables the user to
be authenticated (through the authentication
component), and the personalization of his/her
environments (by creating new tabs, loading new

|
The implementation

of a Widget is
associated with its

description file. Each

Widget must be
accessible through
the index URL
specified in the

description file. The

implementation uses

current Web
standards such as
XHTMIL, JavaScript

(), and CSS.

IEEE Communications Magazine ® March 2012

57

|
The implementation
of the Widget
Combination
component is dlis-
tributed over the
Widget Containers
loaded on the user
environment. This
distribution enables
the implementation
to decouple the
composition mecha-
nisms from the Wid-
get environment.

‘ GUI component ‘ -
Widget %
container ‘ Grid container H Grid container H Grid container ‘ = o)
a9 =
Frontend WC | WC wcC| |wcC WC g 3 5
Fyr || (. (]| |82 || &
. L H B M| 2z | s
Widget 3 =)
implementatio o 3
=
Widget composition 3
capability AJAX client-service component ‘
Persistence component ‘
Backend
layer Semantic User
registry registry registry

Figure 6. Widget environment main components.

widgets, etc.). Each tab includes a JavaScript
object, named a grid container, which is a drag
and drop area on the web page. It enables users
to dynamically add, remove, and move widgets.
Each widget is wrapped within a widget contain-
er (WC) component. The WC receives as input
the widget description file URL. It extracts the
index URL of the widget and invokes it. It pars-
es the responses (XHTML-based) in order to
detect special tags such as generated data and
their type. The WC is in charge of managing the
entire life cycle of the widgets. The WC is imple-
mented as an extension to the widget object of
the DOJO library.

The widget combination component is dis-
tributed over the WC components. It imple-
ments the two-step composition mechanism we
have introduced. Its implementation is detailed
in the next section.

The GUI component communicates with the
back-end components (e.g., the user preference
component) through the AJAX client-server
component. It is a JS (JavaScript) API based on
DOJO, which facilitates the interaction between
the front-end components and the back-end
(server side) components. It facilitates, for exam-
ple, the retrieval of the list of existing widgets
(to be displayed for the user on request), the
description of a specific widget, and the user-
related data (a list of widgets loaded on the
environment, their locations in the environment,
the list of tabs, etc.).

The back-end components are essentially the
user preference component and the persistence
component. The former is in charge of saving and
loading all of the user-related parameters from
the database, such as a user’s preferred widgets,
their place on the web page, and their configura-
tion parameters. The persistence component pro-
vides access to the database content. This
database contains essentially information about
users and their credentials, widgets list, widget
instances, tabs, composite services, and so on.

Two-STEP COMPOSITION IMIECHANISM
IMPLEMENTATION

The implementation of the widget combination
component is distributed over the WCs loaded
on the user environment. This distribution
enables the implementation to decouple the
composition mechanisms from the widget envi-
ronment in order to provide widget composition
capability even for widget containers loaded on a
third-party website.

When the widgets are loaded into the same
environment, the different communication
manager components, corresponding to each
loaded widget, discover each other. The loaded
widget then declares the capabilities it provides.
This is performed either programmatically, by
invoking the JavaScript function Subscribe, or
automatically through the XML description file
provided by the widget. The lists of capabilities
of each communication manager are synchro-
nized each time they are updated. This leads to
the creation, by the widget container, of a GUI
element in the second widget when a semantic
matching is detected. This GUI element is a
clickable icon representing the link between the
two widgets. As illustrated in Fig. 7, the GUI
element includes an icon to execute the link, an
icon to delete it, and another icon to automate
it. Thus, at runtime, the user can perform these
actions to personalize the composite service
definition.

A definition (G < N, L>) of the composite
service created at this first step is managed by
the process manager component. This definition
is defined using the JSON format to facilitate
and speed the processing at the web browser
level. Based on this composite service, the user
may invoke a widget capability from another
one. This could be performed when the user
clicks on a GUI element created earlier. This
mechanism is illustrated in Fig. 7, in which the
telephony widget invokes a search capability of

58

IEEE Communications Magazine ® March 2012

& Orange phone

4 Unregister

Execute link

Automate link

Delete link

2 d, directory Edition =

First name: |

Last name: I

Service: I

Phone: |

Email: I—

Search | Cancel |

«c@a

Figure 7. lllustration of communicating Widgets.

the directory widget in order to display more
information about a caller.

The second step of the widget composition
mechanism we propose enables the user to per-
sonalize the composition created automatically
based on semantic matching. This is achieved
through two GUI elements added to each creat-
ed link. As illustrated in Fig. 7, the first element
enables the user to delete the link, and the sec-
ond one lets the user automate it. In our imple-
mentation these elements appear only when the
user passes through the link with the mouse.

CONCLUSIONS

In this article we have introduced a novel service
creation environment for ordinary users. It relies
on a new abstraction layer based on widgets. On
top of this abstraction layer, we have introduced
a two-step composition mechanism. The first
step is automatic and relies on semantics. The
second step enables manual personalization of
the composite services created at the end of the
first step.

Our proposal is in line with the World Wide
Web Consortium (W3C) standardization of wid-
gets. A first limitation of the current W3C stan-
dard is that it does not include the description of
widgets’ functional capabilities. A second one is
that it does not support widget combination for
security reasons. However, one must note that
the second limitation should be addressed with
HTMLS standardisation efforts.

An experiment of the proposed widget envi-
ronment along with the composition mechanisms
has been conducted in the laboratories of France
Telecom. The results clearly show the usefulness
of the environment in an enterprise context.
Indeed, 89 percent of the 184 ordinary users
involved in the experiment used the proposed
platform; 80 percent of them created their own
accounts and have personalized their environ-
ments by loading the appropriate widgets. Fur-
thermore, 55 percent of them have used, or
intend to use, the environment as the default

starting page of their web browser. In addition,
72 percent of them considered the environment
useful. The ordinary users’ feedback concerning
the widget composition capability was also posi-
tive and encouraging.

Important lessons have been learned from
the design and implementation of this new SCE.
First, by considering the service GUI as part of
the reusable component, the created services are
much more user friendly than existing tools. In
the surveyed tools, the GUI is either created
automatically, in which case it is very basic and
not user friendly, or it is handled by the user
him/herself, in which case ordinary users cannot
create it.

The second lesson learned is related to the
capability of seamlessly controlling sessions and
handling asynchronous events when composing
services. Indeed, since Widgets include a GUI,
sessions and asynchronous events are directly
managed by the GUI and consequently invisible
to the composition tool. Session control and
asynchronous events are transparent from the
perspective of ordinary users. It should be noted
that the capabilities of a widget may change dur-
ing its life cycle within the widget environment.
For example, a telephony widget, in its initial
state, can make and receive calls; but the same
widget does not have the same capabilities when
a call has been established. The SCE we pro-
posed in this article takes this issue into account.

The third lesson is the limitation of our pro-
posal to services that have a GUI. This can be
considered a limitation, since the composition
scope does not include enablers such as authen-
tication or charging. However, it is also an
advantage when considering composition by
ordinary users as it limits the composition scope
to a level that is understandable by ordinary
users.

Finally, the last lesson was in regards to the
limitation of the Microformat semantic dictio-
nary. It does not cover all types of the data that
could be shared between services. For instance,
Microformats does not include a specification

|
Our proposal is inline
with the W3C stan-
dardization of Wid-
gets. A first limitation
of the current W3C
standard is that it
does not include the
description of Wid-
gets’ functional
capabilities. A sec-
ond one is that it
does not support
Widget combination
for security reasons.

IEEE Communications Magazine ® March 2012

59

|
The results show
clearly the usefulness
of the environment
in an enterprise con-
text. Indeed, 89 per-
cent of the 184
ordinary users
involved in the
experiment have
used the proposed
platform, 80 percent
of them have creat-
ed their own
accounts and have
personalised their
environment by
loading the appropri-
ate Widgets.

for representing call information (caller phone
number, called phone number, call state, etc.).
We had to define our own format to overcome
this issue.

REFERENCES

[1] T. Erl, Service-Oriented Architecture: Concepts, Technol-
ogy and Design, Prentice Hall PTR, Aug. 2005.

[2] E. Newcomer, Understanding Web Services — XML,
WSDL, SOAP, and UDDI, Addison-Wesley, 2002.

[3] L. Richardson and S. Ruby, RESTful Web Services, O’
Reilly & Associates, May 2007.

[4] D. Jordan et al., "Web Services Business Process Execu-
tion Language Version 2.0,” http://docs.oasis-open.org/
wsbpel/2.0/wsbpel-specification-draft.html. OASIS Spec-
ification, 2006.

[5] B.S. Ku, “A Reuse-Driven Approach for Rapid Telephone
Service Creation,” Proc. 3rd Int’l. Conf. Software Reuse:
Advances in Software Reusability, Nov. 1994, pp. 64-72.

[6] T. Moriya and J. Akahani, “Application Programming
Gap Between Telecommunication and Internet,” IEEE
Commun. Mag., vol. 48, no. 8, Aug. 2010, pp. 96-102.

[7] B. Wassermann et al., “Sedna: A BPEL-Based Environ-
ment for Visual Scientific Workflow Modeling,” Work-
flows for eScience — Scientific Workflows for Grids,
Dec. 2006.

[8] Y jung et al., “"Employing Collective Intelligence for User
Driven Service Creation,” IEEE Commun. Mag., Jan.
2011.

[9] A. Maaradji et al., “Social Composer: A Social-Aware
Mashup Creation Environment,” ACM CSCW 10, pp.
549-50.

[10] J. Soriano et al., “Fostering Innovation in A Mashup-
Oriented Enterprise 2.0 Collaboration Environment,”
Sys. and Info. Sci. Notes, SIWN Int’l. Conf. Adaptive
Business Sys., Chengdu, China, July, vol. 1, no. 1, pp.
62-69.

[11] J. Wong and J. I. Hong, “Making Mashups with Mar-
mite: Towards End-User Programming for the Web,”
Proc. SIGCHI Conf. Human Factors in Comp. Sys., New
York, NY, pp 1435-44.

[12] IBM Mashup Center, http://www-01.ibm.com/soft-
ware/info/mashup-center/, accessed on Thursday 16th,
2011.

[13] R., Khare, “Microformats: the Next (Small) Thing on
the Semantic Web?,” IEEE Internet Computing, vol. 10,
no. 1, Jan.—Feb. 2006, pp. 68-75.

[14] N. Laga, E. Bertin, and N. Crespi, “Building a User
Friendly Service Dashboard: Automatic and Non-intru-
sive Chaining between Widgets,” 2009 World Conf.
Services I, 6-10 July 2009, pp. 484-91.

[15] N. Laga, E. Bertin, and N. Crespi, “Business Process
Personalization Through Web Widgets,” IEEE Int’l. Conf.
Web Services, 2010, pp. 551-58.

BIOGRAPHIES

NAssIM LAGA holds a Ph.D. in computer science and
telecommunications (UPMC Paris 6 University and Telecom
Sud Paris, France), and M.Sc degrees in network engineer-
ing (UPMC Paris 6 University) and computer science (ESI
Algiers, Algeria). He has been working for France Telecom
since 2007. His research is focused on service composition,
especially in the customer relationship management field.
He has authored more than 10 peer-reviewed papers, and
holds four patents on service composition mechanisms.

EMMANUEL BERTIN [M] holds a Ph.D. in computer science and
telecommunications (UPMC Paris 6 University and Telecom
Sud Paris, France), and an M.Sc. degree in telecom engi-
neering (Telecom Bretagne graduate engineering school,

France). He has been working for France Telecom since
1999 in the field of IP communication services, where he
designed the first European IP Centrex offer. Since 2004,
he has been involved in Orange’s enterprise architecture
program. He is currently senior service architect at Orange
Labs and an adjunct professor at Telecom Sud Paris. His
research interests include service architecture, service com-
position, and adaptation. He has authored more than 30
peer-reviewed papers and holds 16 patents in these areas.

RocH GLITHO [SM] holds a Ph.D. (Tekn. Dr.) in tele-informat-
ics (Royal Institute of Technology, Stockholm, Sweden),
and M.Sc. degrees in business economics (University of
Grenoble, France), pure mathematics (University Geneva,
Switzerland), and computer science (University of Geneva).
He is an associate professor of networking and telecommu-
nications at the Concordia Institute of Information Systems
Engineering (CIISE), Concordia University, Montreal, Canada
where he holds a Canada Research Chair in End-User Ser-
vice Engineering for Communication Networks. He is also
an adjunct professor at several universities including Tele-
com Sud Paris. He worked in industry for almost a quarter
of a century and has held several senior technical positions
at LM Ericsson in Sweden and in Canada (e.g. expert, prin-
cipal engineer, senior specialist). His industrial experience
includes research, international standards’ setting (e.g.
contributions to ITU-T, ETSI, TMF, ANSI, TIA, and 3GPP),
product management, project management, systems engi-
neering and software/firmware design. He is a member of
several editorial boards including IEEE Network and IEEE
Communications Surveys and Tutorials. In the past he has
served as an IEEE Communications Society distinguished
lecturer, as Editor-In-Chief of IEEE Communications Maga-
zine and as Editor-In-Chief of IEEE Communications Surveys
& Tutorials. His research areas include architectures for
end-users services, distributed systems, non-conventional
networking, and networking technologies for emerging
economies. In these areas, he has authored more than 100
peer-reviewed papers, more than 30 of which have been
published in refereed journals. He also holds 24 patents in
the aforementioned areas and has several pending applica-
tions.

NoEL CRespl [SM], professor, holds a Master’s from the Uni-
versities of Orsay and Canterbury, a diplome d’ingénieur
from ENST-Telecom ParisTech, and a Ph.D .and a Habilita-
tion from Paris VI University. From 1993 to 1995 he
worked at CLIP, Bouygues Telecom and then joined France
Telecom R&D in 1995 where he was involved in Intelligent
Network paradigms for value-added services. For Orange,
he led the Mobicarte prepaid service project to define,
architecture, and deploy an infrastructure that now hosts
more than 15 million mobile subscribers. He has played an
active role in standardisation as a delegate in a number of
committees and as an editor for CAMEL; he was appointed
as the coordinator for France Telecom'’s activities for core
network standardization, and later for all GSM/UMTS stan-
dards. In 1999, he joined Nortel Networks as Telephony
Program manager for France and the Middle East-Africa.
He was responsible for the evolution of the switching area,
and led key programmes for the evolution of Nortel prod-
ucts. He has also worked for ETSI as an independent con-
tractor. He joined the Institut Telecom in 2002 and is
currently professor and programme director, leading the
Network and Services Architecture laboratory. He coordi-
nates the standardization activities for Institut Telecom at
ETSI and 3GPP. He is also a visiting professor at the Asian
Institute of Technology and is on the four-person Scientific
Advisory Board of FTW, Austria. His current research inter-
ests are in service architectures, P2P service overlays, future
Internet, and Web-NGN convergence. He is the author/co-
author of more than 230 papers and contributions in stan-
dardization.

60

IEEE Communications Magazine ® March 2012

